CANADA'S WINDVIEW

趣味の写真を投稿していきます。昆虫好きな長男と一緒に昆虫を追いかけています。最初の年はセミやカマキリ、次の年はカブトムシ、トンボ、そして今年は…

三角関数 - 10倍角の公式

カテゴリー[ 昆虫| 田園| | | 数学・幾何学| 寺院| | 祭り| 鉄道| | 風力発電]

イメージ 1

三角関数の10倍角の公式です。
倍角の公式、5倍角の公式から導出できます。

準備

 \displaystyle \sin 2\alpha = 2 \sin \alpha \cos \alpha
 \displaystyle \sin 5 \alpha = \sin \alpha \left( 16 \sin ^ {4} \alpha - 20 \sin ^ {2} \alpha + 5 \right)
 \displaystyle \cos 2\alpha = 2 \cos ^ {2} \alpha - 1
 \displaystyle \cos 5 \alpha = \cos \alpha \left( 16 \cos ^ {4} \alpha - 20 \cos ^ {2} \alpha + 5 \right)
 \displaystyle \tan 2 \alpha = \frac{ 2 \tan \alpha } { 1 - \tan ^ {2} \alpha }
 \displaystyle \tan 5 \alpha = \frac{ \tan \alpha \left( 5 - 10 \tan ^ {2} \alpha + \tan ^ {4} \alpha \right) }{ 1 - 10 \tan ^ {2} \alpha + 5 \tan ^ {4} \alpha }

導出

 \displaystyle \sin 10 \alpha = \cos \alpha \left( 512 \sin ^ 9 \alpha - 1024 \sin ^ 7 \alpha + 672 \sin ^ 5 \alpha - 160 \sin ^ 3 \alpha + 10 \sin \alpha \right)
 \displaystyle \cos 10 \alpha = 512 \cos ^ {10} \alpha - 1280 \cos ^ 8 \alpha + 1120 \cos ^ 6 \alpha - 400 \cos ^ 4 \alpha + 50 \cos ^ 2 \alpha - 1
 \displaystyle \tan 10 \alpha = \frac{ 10 \tan \alpha - 120 \tan ^ 3 \alpha + 252 \tan ^ 5 \alpha - 120 \tan ^ 7 \alpha + 10 \tan ^ 9 \alpha }{ 1 - 45 \tan ^ 2 \alpha + 210 \tan ^ 4 \alpha - 210 \tan ^ 6 \alpha + 45 \tan ^ 8 \alpha - \tan ^ {10} \alpha }

 



 LibreOffice 数式(Math) のソース:
 
alignl sin 10 %alpha = sin 5 ( 2 %alpha ) = sin 2 %alpha ( 16 sin^4 2 %alpha - 20 sin^2 2 %alpha + 5 )
newline
alignl phantom { y } = 2 sin %alpha cos %alpha lbrace 16 ( 2 sin %alpha cos %alpha ) ^4 - 20 ( 2 sin %alpha cos %alpha ) ^2 + 5 rbrace
newline
alignl phantom { y } = 2 sin %alpha cos %alpha ( 256 sin ^4 %alpha cos ^4 %alpha - 80 sin ^2 %alpha cos ^2 %alpha + 5 )
newline
alignl phantom { y } = 2 sin %alpha cos %alpha lbrace 256 sin ^4 %alpha ( 1 - sin ^2 %alpha) ^2 - 80 sin ^2 %alpha ( 1 - sin ^2 %alpha) ^2 + 5 rbrace
newline
alignl phantom { y } = 2 sin %alpha cos %alpha ( 256 sin ^8 %alpha - 512 sin ^6 %alpha + 336 sin ^4 %alpha - 80 sin ^2 %alpha + 5 )
newline
alignl phantom { y } = cos %alpha ( 512 sin ^9 %alpha - 1024 sin ^7 %alpha + 672 sin ^5 %alpha - 160 sin ^3 %alpha + 10 sin %alpha )

 

alignl cos 10 %alpha = cos 5 ( 2 %alpha ) = cos 2 %alpha ( 16 cos ^4 2 %alpha - 20 cos ^2 2 %alpha + 5 ) = cos 2 %alpha lbrace 4 cos ^2 2 %alpha ( 4 cos ^2 2 %alpha - 5 ) + 5 rbrace
newline
alignl phantom { y } = ( 2 cos ^2 %alpha - 1 ) [ 4 ( 2 cos ^2 %alpha - 1 ) ^2 lbrace 4 ( 2 cos ^2 %alpha - 1 ) ^2 - 5 rbrace + 5 ]
newline
alignl phantom { y } = ( 2 cos ^2 %alpha - 1 ) lbrace 4 ( 4 cos ^4 2 %alpha - 4 cos ^2 2 %alpha + 1 ) ( 16 cos ^4 2 %alpha - 16 cos ^2 2 %alpha -1 ) + 5 rbrace
newline
alignl phantom { y } = ( 2 cos ^2 %alpha - 1 ) ( 256 cos ^8 %alpha - 512 cos ^6 %alpha + 304 cos ^4 %alpha - 48 cos ^2 %alpha + 1)
newline
alignl phantom { y } = 512 cos ^10 %alpha - 1280 cos ^8 %alpha + 1120 cos ^6 %alpha - 400 cos ^4 %alpha + 50 cos ^2 %alpha - 1

 

alignl tan 10 %alpha = tan 5 ( 2 %alpha ) = { alignc { tan 2 %alpha ( tan ^4 2 %alpha - 10 tan ^2 2 %alpha + 5 ) } over { 5 tan ^4 2 %alpha - 10 tan ^2 2 %alpha + 1 } }
newline
alignl phantom { y } = { alignc { { { 2 tan %alpha } over { 1 - tan ^2 %alpha } } cdot left lbrace left ( { 2 tan %alpha } over { 1 - tan ^2 %alpha } right ) ^4 - 10 cdot left ( { 2 tan %alpha } over { 1 - tan ^2 %alpha } right ) ^2 + 5 right rbrace } over { 5 cdot left ( { 2 tan %alpha } over { 1 - tan ^2 %alpha } right ) ^4 - 10 cdot left ( { 2 tan %alpha } over { 1 - tan ^2 %alpha } right ) ^2 + 1 } }
newline
alignl phantom { y } = { alignc { { { 2 tan %alpha } over { 1 - tan ^2 %alpha } } cdot left lbrace { ( 2 tan %alpha ) ^4 - 10 ( 2 tan %alpha ) ^2 ( 1 - tan ^2 %alpha ) ^2 + 5 ( 1 - tan ^2 %alpha ) ^4 } over { ( 1 - tan ^2 %alpha ) ^4 } right rbrace } over { { 5 ( 2 tan %alpha ) ^4 - 10 ( 2 tan %alpha ) ^2 ( 1 - tan ^2 %alpha ) ^2 + ( 1 - tan ^2 %alpha ) ^4 } over { ( 1 - tan ^2 %alpha ) ^4 } } }
newline
alignl phantom { y } = { alignc { 2 tan %alpha lbrace 16 tan ^4 %alpha - 40 tan ^2 %alpha ( 1 - tan ^2 %alpha ) ^2 + 5 ( 1 - tan ^2 %alpha ) ^4 rbrace } over { ( 1 - tan ^2 %alpha ) lbrace 80 tan ^4 %alpha - 40 tan ^2 %alpha ( 1 - tan ^2 %alpha ) ^2 + ( 1 - tan ^2 %alpha ) ^4 rbrace } }
newline
alignl phantom { y } = { alignc { 2 tan %alpha ( 5 - 60 tan ^2 %alpha + 126 tan ^4 %alpha - 60 tan ^6 %alpha + 5 tan ^8 %alpha ) } over { ( 1 - tan ^2 %alpha ) ( 1 - 44 tan ^2 %alpha + 166 tan ^4 %alpha - 44 tan ^6 %alpha + tan ^8 %alpha ) } }
newline
alignl phantom { y } = { alignc { 10 tan %alpha - 120 tan ^3 %alpha + 252 tan ^5 %alpha - 120 tan ^7 %alpha + 10 tan ^9 %alpha } over { 1 - 45 tan ^2 %alpha + 210 tan ^4 %alpha - 210 tan ^6 %alpha + 45 tan ^8 %alpha - tan ^10 %alpha } }